
A Publication of MotherhoOd University, Roorkee
UGC Sl.No. 64498

Abstract

In this paper we do not consider replicated allocation of fragments, and leave it as a separate

problem because there are efficient solutions [3] that can be applied to replicate fragments once

an initial non-redundant allocation scheme is generated. Further the problem of query driven data

allocation is considered with the following point of views:

1. Representing and evaluating the set of queries accessing the distributed database system

2. Using this information for the formulation and final solution for the data allocation

problem.

1. INTRODUCTION

Distributed database management systems are important because they provide certain

performance, reliability and availability. However, a critically important issue is how to process

queries requiring data from several locations. In general, satisfying a user request, in a

Distributed database environment, involves the following major steps:

1. Accessing the network directly to determine where the requested data is located,

2. Determining an access strategy that specify which copy of data to access and

when.

3. Considering the location where the data will be processed.

4. Deciding the mechanism of routing data.

Motherhood International Journal of Multidisciplinary

Research & Development

A Peer Reviewed Refereed International Research Journal
Volume II, Issue II, February 2018, pp. 90-104

ONLINE ISSN-2456-2831

A QUERY DRIVEN SITE CAPACITY CONSTRAINED HEURISTIC SCHEME

FOR OPTIMAL ALLOCATION OF FRAGMENTS IN DISTRIBUTED DATABASE

SYSTEMS

Vinod Kumar, Professor, Department of Computer Science, Gurukul Kangri

Vishwavidyalaya, Hardwar, Uttarakhand, India

Anil Kumar Kapil, Professor, Faculty of Mathematics and Computer Sciences, Motherhood

University, Roorkee, Uttarakhand, India

MIJMRD, Vol. II, Issue II, Feb. 2018 ONLINE ISSN-2456-2831

 A QUERY DRIVEN SITE CAPACITY …. 91 | P a g e

2. LITERATURE REVIEW

The data allocation problem has been first studied in terms of file allocation problem in a

multi computer system, and later on as a data allocation problem in distributed database

system. The file allocation problem does not take into consideration the semantics of the

processing being done on files, whereas it must take into consideration the

interdependencies among accesses to multiple fragments by a query. The problem of file

allocation with respect to multiple files on a multiprocessor system was first studied by

[4]. He presented a global optimization model to minimize overall processing cost under

the constraints of response time and storage capacity with a fixed number of copies of

each file. Casey [1] distinguished between updates and queries on files. Whereas Eswaran

[6] suggested that a heuristic rather than exhaustive search approach is more suitable.

A file allocation problem in the environment of a distributed database was analyzed by

Ramamoorthy and Wah [10]. They developed a heuristic approximation algorithm for a simple

file allocation problem as well as for the generalized file allocation problem. Ceri [2] considered

the problem of file allocation for typical databases applications with a simple model of

transaction execution taking into account the dependencies between accesses to multiple

fragments.

A data transfer cost minimization model for the allocation of the distributed database to the

sites is discussed by Apers [11]. The author came up with a very complicated approach to

allocation relations by first partitioning them into innumerable number of fragments, and then

allocating them. In the problem addressed by [11], the fragmentation schema is one of the

outputs of the allocation algorithm. This curtails the applicability of this methodology when

fragmentation schema is already defined and allocation scheme must be generated. Cornell et. al

[5] proposed a strategy to integrate the treatment of relation assignment and query strategy to

optimize performance of a distributed database system.

There have been many linear programming formulations proposed for data allocation

problem [9, 12]. The main problem with these approaches is the lack of modeling of the query

execution strategy. Lin et. al [8] also developed a heuristic algorithm for minimizing overall data

transfer cost, by considering replicated allocation of fragments and both read and update

transactions.

MIJMRD, Vol. II, Issue II, Feb. 2018 ONLINE ISSN-2456-2831

 A QUERY DRIVEN SITE CAPACITY …. 92 | P a g e

3. NOMENCLATURE & DEFINITIONS

n Number of fragments in the Distributed database system.

m Number of sites in the Distributed database system.

c Capacity of each site.

N_S_I Number of sites Involved.

NSI A counter for comparison.

DTC(,) A matrix of data transfer cost among the sites where each element

Ci,j ,i= 1 …n, j= 1 … m, represents data transfer cost between site

i and site j.

Capacity () An array which contains the storing capacity of each site.

Alloc () An array which signifies the boolean information of fragment

allocation having value 1, if a fragment is allocated to site j, and 0,

otherwise.

COST(, 0) An array containing the indices value of matrix DTC(,) which

signifies the fragment number.

COST(, 1) An array containing the indices value of matrix DTC(,) which

signifies the site number.

COST(, 2) An array containing the actual cost value .

ASSIGN () An array storing the cost values of allocated fragments.

SITE() An array storing those site numbers on which the fragments are

allocated.

FRAG() An array storing the indices of allocated fragments.

MIJMRD, Vol. II, Issue II, Feb. 2018 ONLINE ISSN-2456-2831

 A QUERY DRIVEN SITE CAPACITY …. 93 | P a g e

3.1 ASSUMPTIONS

The proposed technique is based on the following assumptions:

1. The number of sites and number of fragments are equal.

2. The number of site involvement is the greatest lower bound of (n / c).

3. The fragment, once allocated to a site, can not be allocated to any other site(s).

4. Replication of fragments is not allowed.

5. The sites are fully connected.

6. Each fragment is allocated to at least one site.

7. No site allocates more fragments than the maximum permissible number.

8. The inter site distance assumed to be unity.

3.2 ALLOCATION PROBLEM

Formally, the allocation problem can be stated as follows:

Let F = {F0 , F1, ... ,Fn-1 }be a set of fragments and S = { S0 , S1, … ,Sm-1 } be set of n sites

connected by communication network on which a set of applications Q={q0 , q1, …, qg-1} are

running. A link between two sites Si and Sj has a positive integer Ci,j associated with it, giving

the cost of a unit data transferred from site Si to site Sj. If the two sites are not directly connected

by a communication link then the cost for the unit data transferred is given by the sum of the

costs of the links of a chosen path from site Si to Sj. Each query qg can be executed from any site

with a certain frequency. Let FREQi,j be the frequency with which query qi is executed from site

Sj . These frequencies of execution of queries, at all sites, can be represented as a matrix FREQ(,)

of order mxn. A query may access one or more fragments.

3.2.1 Query Execution Strategy

The optimal orderings of binary operations is based on a query execution strategy in

distributed databases. A query execution strategy can be :

1. Move Small: If a binary operation involves two fragments located at two different sites

then ship the smaller fragment to the site of the larger fragment.

2. Query Site: Ship all the fragments to the site of origin of query and execute the query.

MIJMRD, Vol. II, Issue II, Feb. 2018 ONLINE ISSN-2456-2831

 A QUERY DRIVEN SITE CAPACITY …. 94 | P a g e

Here, the objective of the data allocation is (i) to minimize the total data transfer cost to

process all the queries by using „Query Site‟ query execution strategy (ii) to maximize the

locality of the fragments for executing the queries (iii) to incorporate the query execution

strategy when a query needs to access fragments from multiple sites and reduce the total data

transfer cost to process all the queries.

For example in Figure 3.2, relations E and G are located at different sites then it will incur

Size (E‟) data transfer cost, if Site(Q) is different from the site where relation E is located.

The inputs to the data allocation problem are

1. A set of n fragments F ={F0, F1, F2, …., Fn-1 }.

2. A set of m sites S = {S0,S1, S2,….,Sm-1 } and a matrix UDTC (,) = [Ci,j] containing

the cost of transporting a unit of data from site Si to site Sj for each i, j.

3. Q= {q0,q1,…,qg-1},a set of g queries and a matrix FREQ= [FREQi , j] containing the

frequency of qj initiated at Si, for each i,j.

4. The fragment dependency graph, for each of the queries along with the estimates of the

intermediate sizes.

5. A vector V = [Vj], having the limit on maximum number of fragments that can be

allocated at site Sj. This models the storage constraint of each site in data allocation.

On the basis of the above inputs we develop a cost model for total data transfer incurred to

process all the queries.

4. COST FUNCTIONS OF DATA TRANSFER IN DDBMS

We define an allocation of fragments, as the optimal allocation, that optimizes the total data

transfer cost within the constraints. So, it is desirable to know the size of data for every fragment

that may be required by any site for processing a query. The fragments located at different sites

may be of different sizes. Thus, in the fragment dependency graph for „Query Site‟ query

processing strategy, the size of the data of a fragment required by query site does not vary with

the location of other fragments, since there is no dependency between the fragments accessed by

the query.

Let ri,j be defined as the size of the data of Fj , needed to be transported to the site where

query qi is initiated. The corresponding matrix R is of order gxn. Let the frequency of query qi,

MIJMRD, Vol. II, Issue II, Feb. 2018 ONLINE ISSN-2456-2831

 A QUERY DRIVEN SITE CAPACITY …. 95 | P a g e

initiated at site Sj, be FREQi, j. And let the query qi request for the fragment Fk and each request

require ri,k amount of data transfer from the site where Fk is located. The amount of data, needed

to be transferred from the site where fragment Fk is allocated to the site Si where the query is

initiated, is given by matrix FREQ(,) of order mxn.

Thus, the amount of data transfer for query qi , from site Sj, can be expressed as

ADT =

1

0

n

j

FREQi,j* ri,j (1)

The total data transfer cost is:

ADTC =

1

0

1

0

m

i

n

j

Csite(Fk),i * ADTi,j (2)

The communication cost Ci,j represents the communication in terms of bytes transferred,

between the site (Fk) and site(Fi).

5. THE PROPOSED METHOD AND ALGORITHM

 A fragment is allocated to a site in such a way that extensive data transfer cost is avoided

and the capacity of the site suits to the execution environment of the system. The proposed

algorithm involves stepwise refinement of matrix of Data Transfer Cost (DTC (,)) among the

sites, an array storing those site numbers on which the fragments are allocated (SITE ()) and an

array containing those fragment numbers, which get allocated (FRAG ()) during allocation

process of m fragments to n sites. These fragments are assigned to the sites in such a way that the

total data transfer cost remains minimum.

A brief description of the proposed method is as follows:

1. Arrange the DTC (,) in ascending order and store in an array COST (, 2). Store row

and column indices into array COST (, 0) and COST (, 1) respectively.

 Begin with the first element of the COST (, 2), COST (, 0) and COST (, 1), and assign to

arrays ASSIGN (), SITE () and FRAG () respectively.

2. Proceed with next values of COST (, 0) and COST (, 1) that give rise to two cases:

MIJMRD, Vol. II, Issue II, Feb. 2018 ONLINE ISSN-2456-2831

 A QUERY DRIVEN SITE CAPACITY …. 96 | P a g e

2.1 Check the SITE () and FRAG () values corresponding to the previously assigned

values. If COST (, 1) differs the previous value and COST (, 0) equals the

previous value (it indicates that capacity is available and fragment get allocated),

store these values to arrays SITE () and FRAG () respectively, and store the

actual data transfer cost of the fragment into ASSIGN(,). Update the information

regarding site and fragment accordingly.

2.2 Check the SITE () and FRAG () values corresponding to the previously

assigned values. If value of COST (, 0) and COST (, 1) differ than their

previously assigned values (it shows that capacity is available, allocation

is not made yet) store these value to SITE () and FRAG () respectively, and

store the actual data transfer cost of the fragment into ASSIGN(,). Update

the information regarding site and fragment accordingly.

3. When both of the above cases fail then search a site in the array SITE (). If the site

indices match with the corresponding indices of COST (, 0), check its capacity, if

available, allocate the fragment to the site and update the information regarding SITE ()

and FRAG ().

4. Continue the above process till all the fragments are allocated.

5. Get the total data transfer cost by summing the values in the array ASSIGN ().

6. IMPLEMENTATION OF THE ALGORITHM

Consider a distributed database system with 4 fully connected sites S0, S1, S2 and S3 and

four relations E, F, G and H. Let there be only one query. Let this query be initiated from site S0

with frequency 2, from site S1 with frequency 3 , from site S2 with frequency 4 and from site S3

with frequency 1.

Let the sizes of the intermediate fragments be Size (E‟) = 10, Size(F‟)=15, Size(G‟)=25 and

Size(H‟)= 5. Since there is only one query the corresponding matrix R=[10, 15, 25, 5] and the

matrix FREQ =[2, 3, 4, 1] showing frequencies of the query to the corresponding sites S0, S1, S2,

and S3. Let the limit vector V=[2, 2, 2, 2]. Then the amount of data transfer can be expressed as:

ADT= FREQ *R

i.e.

MIJMRD, Vol. II, Issue II, Feb. 2018 ONLINE ISSN-2456-2831

 A QUERY DRIVEN SITE CAPACITY …. 97 | P a g e

 E F G H

 S0 20 30 50 10

 S1 60 45 75 15

ADT(,)= S2 40 60 100 20

 S3 10 15 25 5

 S0 S1 S2 S3

 S0 0 2 5 4

UDTC(,) = S1 2 0 3 1

 S2 5 3 0 2

 S3 4 1 2 0

Then, the data transfer cost among the sites is given by

 DTC = UDTC(,) *ADT(,)

i.e.

 0 2 5 4 20 30 50 10

 2 0 3 1 * 60 45 75 15

DTC(,) = 5 3 0 2 40 60 100 20

 4 1 2 0 10 15 25 5

 E F G H

 = S0 360 450 750 150

 S1 160 255 425 85

 S2 300 315 525 105

 S3 220 285 475 95

Step 1: BEGIN

 Input : 4, 4, 2 ,

MIJMRD, Vol. II, Issue II, Feb. 2018 ONLINE ISSN-2456-2831

 A QUERY DRIVEN SITE CAPACITY …. 98 | P a g e

 E F G H

 S0 360 450 750 150

 DTC(,) = S1 160 255 425 85

 S2 300 315 525 105

 S3 220 285 475 95

Step 2: NSI = 1

 l=1

 For i=0 to 15 Do

 begin

 Capacity (,) =2

 Alloc(,) =0

 end;

Step 3: Check the no of site involvement which is N_S_I =2

Step 4: f=4*4

 p=0

 For i=0 to 3 Do

 For j=0 to 3 Do

 begin

 If(p<=f)

 COST(p,0)=i

 COST(p,2) = DTC(i,j)

 p = p+1

end;

MIJMRD, Vol. II, Issue II, Feb. 2018 ONLINE ISSN-2456-2831

 A QUERY DRIVEN SITE CAPACITY …. 99 | P a g e

Step 5: For i=0 to 15 DO

 For j=1 to 16 Do

 begin

 Step 5.1: Arrange the values of COST(p,2) in ascending order and swap

the values of COST(p,0) and COST(p,1) accordingly.

 COST(p,0) = (1,3,…,0,2)

 COST(p,1) = (3,3,…,2,2)

 COST(p,2) = (85,95,…,525,750)

 end;

Step 6: After assigning the first element of COST(p,2) to ASSIGN() , COST(p,0) to SITE() and

COST(p,1) to FRAG() we get

 ASSIGN() = {85}

 SITE() ={1}

 FRAG() = {3}

 Update the other information to the corresponding site and fragments accordingly.

Step 7: For j=1 to 16 Do

 begin

 After finding the first element search the remaining element, update and store their

corresponding information accordingly.

 Step 7.1: Check whether l == n ?

 If yes. Goto step 9 otherwise continue with next step 7.2

 Step 7.2: Check whether NSI < N_S_I

 If yes. goto step 7.3 otherwise goto step 7.6

 Step 7.3, 7.4 & 7.5: The allocations obtained after these steps are

MIJMRD, Vol. II, Issue II, Feb. 2018 ONLINE ISSN-2456-2831

 A QUERY DRIVEN SITE CAPACITY …. 100 | P a g e

Site Fragment Cost

1 0 160

3 1 285

 and

 ASSIGN() = { 85, 160, 285 }

 SITE() = { 1, 1, 3 }

 FRAG () = { 3, 0, 1 }

 Step 7.6: Search the COST(p,1) for the remaining unallocated fragment (s) and goto

step 7.7

 Step 7.7&7.8: The allocation obtained after these steps is :

Site Fragment Cost

3 2 475

 and

 ASSIGN() = { 85, 160, 285, 475 }

 SITE() = { 1, 1, 3, 3 }

 FRAG () = { 3, 0, 1, 2 }

 end;

Step 8: Total_Cost =0

 For i=0 to 4 Do

 Total_Cost = 0 + (85 + 160 + 285 + 475)

 Total_Cost = 1005

Step 9: Stop

MIJMRD, Vol. II, Issue II, Feb. 2018 ONLINE ISSN-2456-2831

 A QUERY DRIVEN SITE CAPACITY …. 101 | P a g e

7. CONCLUSION

The Ford and Fulkerson Algorithm, which has earlier been applied for the solution of this

problem [7] using Max-Flow Min–Cut approach, first generates a graph of (M = m + n + 2)

nodes involving (N = m + mn + n) edges. The solution steps also depend on the

maximum capacity C of all the edges involved in the graph resulting into time complexity of

O(MNC). It can be further approximated as O[(6m
4
 +8m

3
) C] assuming equal number of

fragments and sites.

On the same scale, the time complexity of our algorithm is O(m
4
) which is much lower as

compared to that mentioned above. Further, for the present day high capacity networks, the

earlier algorithm becomes totally uncontrollable because its complexity depends on the capacity.

Thus, our algorithm is faster as well as simpler as it involves only comparison, assignment and

just m addition operations.

The complexity comparison is given in Table 1 and Graph 1

Table 1 : Time Complexity Comparison

Size (F,S) Earlier Method [KARL 97]

 O[(6m
4
 +8m

3
)]

Present Method

O(m
4
)

4,4 2048 256

5,5 4750 625

6,6 9504 1296

7,7 17150 2401

The complexity comparison graph is given below:

MIJMRD, Vol. II, Issue II, Feb. 2018 ONLINE ISSN-2456-2831

 A QUERY DRIVEN SITE CAPACITY …. 102 | P a g e

Figure 1 :Time Complexity Comparision

The Complexity Comparison

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 2 3 4

Size

C
o

m
p

le
x
it

y

MIJMRD, Vol. II, Issue II, Feb. 2018 ONLINE ISSN-2456-2831

 A QUERY DRIVEN SITE CAPACITY …. 103 | P a g e

REFERENCES

 1. Casey R.C., “Allocation of copies of a file in an information network”,

In Proceedings of Spring Joint Computer Conference, IFIPS, pp. 617-

625, 1972.

 2. Ceri S., Martella G. and Pelagatti, “Optimal file allocation for a

distributed on a network of minicomputers”, In Proceedings of

International Conference on Database, Aberdeen ,pp., 345-357, July

1980.

 3. Ceri S., Martella G. and Pelagatti G., “Optimal file allocation in a

computer network : A solution method based on the knapsack

problem”, Computer Network, vol.6, no. 5, pp. 345-357, 1982.

4. Chu W.W., “Optimal file allocation in multiple computer system”, IEEE

Transactions on Computers, C-18(10), 1969.

 5. Cornell D. W and Yu P. S., “Site assignment for relations and join

operations in the distributed transaction processing environment”, In

Proceedings of IEEE International Conference on Data Engineering,

Feb, 1988.

 6. Eswaran, K. P. “Placement of records in a file and file allocation in a

computer network”, Information Processing, pp. 304-307, 1974.

7.

Karlapalem K and Ng M. P, “Query driven data allocation algorithms

for distributed database systems”, In Proceedings of Int. Conference on

Database and Expert Systems Applications, pp. 347-356, sep 1997.

 8. Lin X. –M, Orlowaska M. E., and Zhang Y.-C , “Database

placement in communication networks for minimizing the overall

Transmission cost”, Mathematical and Computer Modeling, 19(1): 7-

19, Jan 1994.

MIJMRD, Vol. II, Issue II, Feb. 2018 ONLINE ISSN-2456-2831

 A QUERY DRIVEN SITE CAPACITY …. 104 | P a g e

9. Ram S. and Marsten R.E., “A model for database allocation

incorporating a concurrency control mechanism”, IEEE Transactions

on Knowledge and Data Engineering, vol. 3, No.3, pp. 389-395, 1991.

10. Ramamoorthy C. V. and B. Wah, “The placement of relations on a

distributed relational databases”, In Proceedings of first International

conference Distributed Computing systems, Huntsville, Alabama,

September – October, , pp 642-649, 1979.

11. Apers P.M.G., “Data Allocation in Distributed Database”, ACM

Transactionsactions on Database Systems, 13-C37:263-304, September

1988

12. Gavish B. and Pirkul H.,“Computer and database location in distributed

computer systems”, IEEE Transaction on Computers, C-35(7) : 583 –

590, 1986.

